There are two sorted arrays A and B of sizes m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
This problem can be converted to the problem of finding kth element, k is (A’s length+ B’ Length)/2. If any of the two arrays is empty, then the kth element is the non-empty array’s element.
If k == 0, the kth element is the first element of A or B. For normal cases(all other cases), we need to move the pointer at the pace of half of an array length.
Median of Two Sorted Arrays in Java
public static double findMedianSortedArrays(int A[], int B[]) { int m = A.length; int n = B.length; if ((m + n) % 2 != 0) // odd return (double) findKth(A, B, (m + n) / 2, 0, m - 1, 0, n - 1); else { // even return (findKth(A, B, (m + n) / 2, 0, m - 1, 0, n - 1) + findKth(A, B, (m + n) / 2 - 1, 0, m - 1, 0, n - 1)) * 0.5; } } public static int findKth(int A[], int B[], int k, int aStart, int aEnd, int bStart, int bEnd) { int aLen = aEnd - aStart + 1; int bLen = bEnd - bStart + 1; // Handle special cases if (aLen == 0) return B[bStart + k]; if (bLen == 0) return A[aStart + k]; if (k == 0) return A[aStart] < B[bStart] ? A[aStart] : B[bStart]; int aMid = aLen * k / (aLen + bLen); // a’s middle count int bMid = k - aMid - 1; // b’s middle count // make aMid and bMid to be array index aMid = aMid + aStart; bMid = bMid + bStart; if (A[aMid] > B[bMid]) { k = k - (bMid - bStart + 1); aEnd = aMid; bStart = bMid + 1; } else { k = k - (aMid - aStart + 1); bEnd = bMid; aStart = aMid + 1; } return findKth(A, B, k, aStart, aEnd, bStart, bEnd); }
Algorithm to find Median of Two Sorted Arrays in Java
1) Calculate the medians m1 and m2 of the input arrays ar1[] and ar2[] respectively.
2) If m1 and m2 both are equal then we are done, and return m1 (or m2) 3) If m1 is greater than m2, then median is present in one of the below two subarrays.
3) From first element of ar1 to m1 (ar1[0…|_n/2_|])
4) From m2 to last element of ar2 (ar2[|_n/2_|…n-1]) 4) If m2 is greater than m1, then median is present in one of the below two subarrays.
5) Repeat the above process until the size of both the subarrays becomes 2.
6) If size of the two arrays is 2 then use below formula to get the median. Median = (max(ar1[0], ar2[0]) + min(ar1[1], ar2[1]))/2